## ECE 307 – Techniques for Engineering Decisions

13. Data Uses

#### **George Gross**

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

### FOCUS OF DATA USAGE TOPIC

☐ Use of historical data for the construction of

probability distributions

■ The interpretation of probability information

☐ Use of estimators

■ Application example

#### **EXAMPLE**

- **□** Consider the interpretation of the statement
  - $P\{sunny\ day\ in\ June\ in\ Champaign\}=0.53$
- We obtain this probability from 20 years of June weather data in Champaign, with each day classified as either *sunny* or *not sunny*
- ☐ The 600 June days of data indicate that 318 or 53 % of these days are classified as sunny
- ☐ Given the long term historical behavior in the data, the probability of 0.53 makes sense

#### **USE OF HISTOGRAMS**



### CONSTRUCTION OF THE c.d.f.



- $\Box$  An estimator is a r.v. that can be used to estimate the value of a parameter of interest
- $\square$  Consider a r.v. X whose statistical parameters we wish to estimate
- □ We consider a set of r.v.s  $\left\{ X_i, i = 1, 2, ..., n \right\}$  where each  $X_i$  is independent of  $X_j, i \neq j$ , and each  $X_i$  has the same distribution as  $X_i$ ; we refer to this set as a set of  $x_i$  independent, identically

distributed or i.i.d. r.v.s

- $\square$  We use the set of *n i.i.d. r.v.*s  $\left\{X_i, i=1,2,...,n\right\}$  to
  - construct estimators for the moments of X
- We focus on the estimators for two key
  - parameters of X:
    - O mean of X
    - O variance of X

 $\Box$  The sample mean estimator is the r.v.

$$\frac{\sum_{i=1}^{n} X_{i}}{X} = \frac{1}{n}$$

 $\square$  In practice, we obtain an estimate of the mean by using the (observed) realizations of the n r.v.s  $X_i$ 

$$\overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}}$$

☐ The estimator of the sample variance is given by the r.v.

$$\sum_{i=1}^{n} \left( X_{i} - E \left\{ X_{i} \right\} \right)^{2}$$

$$\sum_{i=1}^{2} = \frac{i}{n-1}$$

☐ We obtain an estimate of the variance by using the observed realizations of the n r.v.s  $X_i$ 

$$s^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}$$

n-1

- An equivalent way to think about the computation
  - of the estimate is to draw n random samples from
  - the sample space X
- $\square$  We collect the set of n random samples
  - $\{x_1, x_2, ..., x_n\}$  of the r.v. X: these are n randomly

drawn values from the sample space of X

lacksquare The value  $\bar{\chi}$  computed with the set of random

samples provides an estimate of

$$\mu = E\{X\}$$

 $\square$  The value  $s^2$  computed with the set of random

samples provides an estimate of

$$\sigma^2 = var\left\{X\right\}$$

- □ This application example focuses on taco shells and is concerned with the high breakage rate in the shipment of most taco shells: typical rate is 10 15 %
- □ A company with a new shipping container claims to have a lower – approximately 5% breakage rate
- ☐ This company's price is \$ 25 for a 500 taco shell box vs. \$ 23.75 for a 500 taco shell box of the current supplier

☐ A test run using 12 boxes from the new company

and 18 boxes from the current company is

performed and used for comparison purposes: we

randomly pick the elements to construct the set

$$\{x_1, x_2, ..., x_{12}\}$$

from the sample space of the r.v. X to represent

the number of unbroken shells from the new company and the elements to construct the set

$$\{y_1, y_2, ..., y_{18}\}$$

from the sample space of the r.v. Y to represent those of the current company

■ We tabulate the data of the useable shells from the two suppliers

### **UNBROKEN TACO SHELLS**

| new supplier |     |  |
|--------------|-----|--|
| 468          | 467 |  |
| 474          | 469 |  |
| 474          | 484 |  |
| 479          | 470 |  |
| 482          | 463 |  |
| 478          | 468 |  |

| current supplier |     |     |
|------------------|-----|-----|
| 444              | 441 | 450 |
| 449              | 434 | 444 |
| 443              | 427 | 433 |
| 440              | 446 | 441 |
| 439              | 452 | 436 |
| 448              | 442 | 429 |



# c.d.f.s CONSTRUCTED FOR THE TWO SUPPLIERS



### c.d.f.s OF THE TWO SUPPLIERS

☐ Clearly, the new supplier has the higher expected

number of useable shells per box; the two

distributions, however, are highly similar

☐ The mean number of useable shells for the new

supplier is 473 and so the expected costs per

### c.d.f.s OF THE TWO SUPPLIERS

useable shell is \$0.0529; the minimum (maximum)

number of useable shells is 463(482)

☐ The mean number of useable shells for the

current supplier is 441 and so the expected costs

per useable shell is \$0.0539; the minimum

(maximum) number of useable shells is 429(452)

# REDUCED ORDER REPRESENTATION OF THE TEST RUN DATA



#### **COMMENTS**

 $\Box$  We use the *c.d.f.*s to estimate the means of the

two populations of suppliers

 $\square$  In general for an arbitrary r.v. X

$$E\left\{\frac{1}{X}\right\} \neq \left[E\left\{X\right\}\right]^{-1}$$

#### **COMMENTS**

and so we cannot use the approximation

$$E\left\{\frac{25}{X}\right\} \approx \frac{25}{E\left\{X\right\}}$$

 $\Box$  This example demonstrates the usefulness of the c.d.f.s in applications even when they can only be approximated for the limited data available